Dopamine D2 receptor overexpression alters behavior and physiology in Drd2-EGFP mice.
نویسندگان
چکیده
Bacteria artificial chromosome (BAC) transgenic mice expressing the reporter protein enhanced green fluorescent protein (EGFP) under the control of the D1 and D2 dopamine receptor promoters (Drd1-EGFP and Drd2-EGFP) have been widely used to study striatal function and have contributed to our understanding of the physiological and pathological functions of the basal ganglia. These tools were produced and promptly made available to address questions in a cell-specific manner that has transformed the way we frame hypotheses in neuroscience. However, these mice have not been fully characterized until now. We found that Drd2-EGFP mice display an ∼40% increase in membrane expression of the dopamine D2 receptor (D2R) and a twofold increase in D2R mRNA levels in the striatum when compared with wild-type and Drd1-EGFP mice. D2R overexpression was accompanied by behavioral hypersensitivity to D2R-like agonists, as well as enhanced electrophysiological responses to D2R activation in midbrain dopaminergic neurons. Dopamine (DA) transients evoked by stimulation in the nucleus accumbens showed slower clearance in Drd2-EGFP mice, and cocaine actions on DA clearance were impaired in these mice. Thus, it was not surprising to find that Drd2-EGFP mice were hyperactive when exposed to a novel environment and locomotion was suppressed by acute cocaine administration. All together, this study demonstrates that Drd2-EGFP mice overexpress D2R and have altered dopaminergic signaling that fundamentally differentiates them from wild-type and Drd1-EGFP mice.
منابع مشابه
A comparison of striatal-dependent behaviors in wild-type and hemizygous Drd1a and Drd2 BAC transgenic mice.
Studies of striatal physiology and motor control have increasingly relied on the use of bacterial artificial chromosome (BAC) transgenic mice expressing fluorophores or other genes under the control of genetic regulatory elements for the dopamine D1 receptor (D1R) or dopamine D2 receptor (D2R). Three recent studies have compared wild-type, D1R, and D2R BAC transgenic mice, and found significant...
متن کاملCocaine-induced dendritic spine formation in D1 and D2 dopamine receptor-containing medium spiny neurons in nucleus accumbens.
Psychostimulant-induced alteration of dendritic spines on dopaminoceptive neurons in nucleus accumbens (NAcc) has been hypothesized as an adaptive neuronal response that is linked to long-lasting addictive behaviors. NAcc is largely composed of two distinct subpopulations of medium-sized spiny neurons expressing high levels of either dopamine D1 or D2 receptors. In the present study, we analyze...
متن کاملStrain-specific regulation of striatal phenotype in Drd2-eGFP BAC transgenic mice.
Mice carrying bacterial artificial chromosome (BAC) transgenes have become important tools for neuroscientists, providing a powerful means of dissecting complex neural circuits in the brain. Recently, it was reported that one popular line of these mice--mice possessing a BAC transgene with a D(2) dopamine receptor (Drd2) promoter construct coupled to an enhanced green fluorescent protein (eGFP)...
متن کاملThe Effects of Dopamine Receptor Agents on Swim Stress-Induced Inhibition of Naloxone-Induced Jumping Behavior in Morphine-Dependent Mice
In the present study, interactions of dopamine receptor agonists and antagonists with water swimming stress (WSS) on naloxone-induced jumping in morphine-dependent mice were examined. Mice were rendered dependent as described in the methods section. The opioid receptor antagonist, naloxone (1 mg/kg), was injected to elicit jumping (as a withdrawal sign). The first group exposed to WSS in the pr...
متن کاملRegulation of ethanol intake under chronic mild stress: roles of dopamine receptors and transporters
Studies have shown that exposure to chronic mild stress decreases ethanol intake and preference in dopamine D2 receptor wild-type mice (Drd2 (+/+)), while it increases intake in heterozygous (Drd2 (+/-)) and knockout (Drd2 (-/-)) mice. Dopaminergic neurotransmission in the basal forebrain plays a major role in the reinforcing actions of ethanol as well as in brain responses to stress. In order ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 1 شماره
صفحات -
تاریخ انتشار 2011